The Dynamics of Homologous Pairing during Mating Type Interconversion in Budding Yeast
نویسندگان
چکیده
Cells repair most double-strand breaks (DSBs) that arise during replication or by environmental insults through homologous recombination, a high-fidelity process critical for maintenance of genomic integrity. However, neither the detailed mechanism of homologous recombination nor the specific roles of critical components of the recombination machinery-such as Bloom and Werner syndrome proteins-have been resolved. We have taken a novel approach to examining the mechanism of homologous recombination by tracking both a DSB and the template from which it is repaired during the repair process in individual yeast cells. The two loci were labeled with arrays of DNA binding sites and visualized in live cells expressing green fluorescent protein-DNA binding protein chimeras. Following induction of an endonuclease that introduces a DSB next to one of the marked loci, live cells were imaged repeatedly to determine the relative positions of the DSB and the template locus. We found a significant increase in persistent associations between donor and recipient loci following formation of the DSB, demonstrating DSB-induced pairing between donor and template. However, such associations were transient and occurred repeatedly in every cell, a result not predicted from previous studies on populations of cells. Moreover, these associations were absent in sgs1 or srs2 mutants, yeast homologs of the Bloom and Werner syndrome genes, but were enhanced in a rad54 mutant, whose protein product promotes efficient strand exchange in vitro. Our results indicate that a DSB makes multiple and reversible contacts with a template during the repair process, suggesting that repair could involve interactions with multiple templates, potentially creating novel combinations of sequences at the repair site. Our results further suggest that both Sgs1 and Srs2 are required for efficient completion of recombination and that Rad54 may serve to dissociate such interactions. Finally, these results demonstrate that mechanistic insights into recombination not accessible from studies of populations of cells emerge from observations of individual cells.
منابع مشابه
Regulation of yeast mating-type interconversion: feedback control of HO gene expression by the mating-type locus.
The ultimate product of yeast mating-type interconversion is a stable a/alpha diploid cell. A haploid cell carrying the HO gene gives rise to a diploid cell in a two-step process: first, the cell switches mating type as a result of genetic rearrangement (cassette substitution) catalyzed by HO; then, cells of opposite type mate to form a/alpha diploids. Mating-type interconversion does not occur...
متن کاملClose, stable homolog juxtaposition during meiosis in budding yeast is dependent on meiotic recombination, occurs independently of synapsis, and is distinct from DSB-independent pairing contacts.
A site-specific recombination system that probes the relative probabilities that pairs of chromosomal loci collide with one another in living cells of budding yeast was used to explore the relative contributions of pairing, recombination, synaptonemal complex formation, and telomere clustering to the close juxtaposition of homologous chromosome pairs during meiosis. The level of Cre-mediated re...
متن کاملMeiotic chromosome mobility in fission yeast is resistant to environmental stress.
The formation of healthy gametes requires pairing of homologous chromosomes (homologs) as a prerequisite for their correct segregation during meiosis. Initially, homolog alignment is promoted by meiotic chromosome movements feeding into intimate homolog pairing by homologous recombination and/or synaptonemal complex formation. Meiotic chromosome movements in the fission yeast, Schizosaccharomyc...
متن کاملMicrotubule dynamics in the budding yeast mating pathway.
In order for haploid gametes to fuse during fertilization, microtubules (MTs) must generate forces that are sufficient to move the nuclei together. Nuclear movements during fertilization rely on microtubule-associated proteins (MAPs), many of which have been characterized extensively during mitosis. A useful model system to study MT-dependent forces before nuclear fusion, or karyogamy, is the m...
متن کاملChromosome pairing does not contribute to nuclear architecture in vegetative yeast cells.
There are several reports of a closer-than-random colocalization of homologous chromosomes in the vegetative nuclei of diploid budding yeast. Here, we studied by fluorescence in situ hybridization (FISH) the nuclear distribution of chromosomes and found a slight tendency toward closer proximity between homologous (allelic) loci than between any nonhomologous chromosomal regions. We show that mo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- PLoS Genetics
دوره 2 شماره
صفحات -
تاریخ انتشار 2006